if root 2 = 1.4142, then square root of {(root 2-1) by (root 2 + 1)} | √𝟐=1.4142, then √((√2−1)/(√2+
Root 2 - 1/ Root 2 + 1 = a + b Root 2. Find a and b.
Find sum of telescope series 1/(1+ sqrt(2)) + 1/(sqrt(2) + sqrt(3)) + ……+ 1/(sqrt(99) + sqrt(100))
If sqrt(3x - 5) + sqrt(x -1) = 2, what is the value of x
If √2=1.414, then the value of √(((√2-1))/((√2+1))) is …………
Q83 | Simplify (√2+1/√2) ^2 | root 2 + 1 / root 2 whole square | root 2 + 1 by root 2 whole square
Simplify: `(1)/(sqrt2 +1) + (1)/(sqrt3 + sqrt2) + (1)/(sqrt4 + sqrt3)`
1^-1 = 1^3/2 = 1^0 = 1^242 = 1 ? Concept Clarification | Negative Exponent | Fractional Exponent
If x=root 2+1/root2-1 and y=root 2-1/root2+1 find the value of x^2+y^2+xy
If root 2 = 1.414 find the value of 1/root 2 + 1 | Class-9 Maths | Number Systems
if √2=1.4142, then √√2-1/√√2+1 is equal to
sqrt(i)
Solve: 1/(1+√2)+1/(√2+√3)+⋯+1/(√7+√8)+1/(√8+√9)=2
A Wonderful Math Problem. Square root i + Square root -i =?
Solve (√2-1)/(√2+1)=a+b√2. Solve (Root 2-1)/(Root 2+1)=a + b Root 2
"`(2+sqrt(2)+1/(2+sqrt(2))+1/(sqrt(2)-2))`simplifies to`2-sqrt(2)`(b) 2 (c) `2+sqrt(2)`(d) `2sqrt`"
Represent root 2 on number line | Root 2 on number line | Locate root 2 on number line
Find the sum `(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))
"Prove that: `1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt
The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))...