結果 : sample-efficient deep reinforcement learning via episodic backward update
53:45

Towards a Theory for Sample-efficient Reinforcement Learning with Rich Observations

Microsoft Research
1,867 回視聴 - 6 年前
46:53

Reinforcement learning: When can we do sample efficient exploration?

SISL
381 回視聴 - 3 年前
54:35

Divia Grover: Sample efficient Bayesian reinforcement learning

RISE Research Institutes of Sweden
429 回視聴 - 3 年前
1:00:01

Recent Advances in Deep Reinforcement Learning | AI Talks

MBZUAI
1,864 回視聴 - 1 年前
42:45

Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning - Sham Kakade

Institute for Advanced Study
1,483 回視聴 - 5 年前
49:44

1W-Minds:Dec 1,Zhaoran Wang: Demystifying (Deep) Reinforcement Learning with Optimism and Pessimism

Mark Iwen
323 回視聴 - 1 年前
27:30

Emma Brunskill (Stanford University): "Efficient Reinforcement Learning When Data is Costly"

MIT Institute for Data, Systems, and Society
2,614 回視聴 - 5 年前
46:45

RLOO: A Cost-Efficient Optimization for Learning from Human Feedback in LLMs

BuzzRobot
3,517 回視聴 - 4 か月前
1:02:00

Sham Kakade: Representation, Modeling, and Optimization in Reinforcement Learning

Berkeley EECS
878 回視聴 - 4 年前 に配信済み
1:17:53

Adaptive Discretization For Reinforcement Learning

Communications and Signal Processing Seminar Series
338 回視聴 - 4 年前
38:23

Making Real-World Reinforcement Learning Practical

RAIL
14,855 回視聴 - 10 か月前
31:13

Deep Reinforcement Learning Essential Prerequisite Review

Machine Learning TV
1,086 回視聴 - 6 年前
1:09:46

Towards Generalization and Efficiency in Reinforcement Learning

Microsoft Research
3,630 回視聴 - 5 年前
1:04:01

Lecture 14 | Deep Reinforcement Learning

Stanford University School of Engineering
371,830 回視聴 - 7 年前
33:11

An Introduction to the REINFORCE Deep RL Algorithm

Udacity-DeepRL
3,419 回視聴 - 5 年前 に配信済み
57:57

RLHF: Reinforcement Learning with Once-per-Episode Feedback

ReALML Reading Group
398 回視聴 - 1 年前
1:33:24

RLSS 2023 - Temporal Difference Methods with Function Approximation - Herke van Hoof

Universitat Pompeu Fabra - Barcelona
277 回視聴 - 1 年前
52:06

Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms

Safe RL
453 回視聴 - 1 年前
10:38

ICML 2020 Oral Talk: Planning to Explore via Self-Supervised World Models

Deepak Pathak
2,191 回視聴 - 4 年前
1:07:34

10701 Lecture 24 Reinforcement Learning

Daniel Bird
204 回視聴 - 3 年前