cot(3pi/2)
cot(3pi/2 - x) | cot(3pi/2 - theta)
Cofunction Trigonometric Identity Explanation sin(3pi/2 - x)
Compute cot(3pi/2)
Prove that: `cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+\"cot\"(2pi+x)}=1`
cos (3 pi/2+ x).cos(2pi +x).((cot 3pi/2 -x) + (cot 2pi + x))= 1
Verify the Trigonometric Identity cos(3pi/2 + x) = sin(x)
'cos(3pi2 + x) cos(2pi + x )[ cot(3pi2- x) + cot(2pi + x)] = 1'||
Compute cos(3pi/2) using the unit circle
`cos((3pi)/(2) +x) cos(2pi+x)[cot(3pi)/(2)-x+cot(2pi+x)]=1`
Prove that: sec(3pi/2-x)sec(x-5pi/2)+tan(5pi/2+x)tan((x-3pi/2)=-1
Prove that: `cos((3pi)/2+x)cos(2x+x)[cot((3pi)/2-x)+cot(2pi+x)]=1`...
Compute tan(3pi/2)
cot(270 + x) | cot(3pi/2 + x) | cot(270 + A) | cot(3pi/2 + A) | cot(270 + theta)
Write cos(3pi/2 + x) as a Function of x Alone
cos.((3pi)/2+x)cos.(2pi+x) [ cot((3pi)/2-x)+cot(2pi+x)]=1 | 11 | त्रिकोणमितीय फलन | MATHS |...
lim┬(x→π/2)〖(cotx-cosx)/(π-2x)^3 〗 equals to _____
Trigonometric Values 0, π/2, π, 3π/2, 2π,⋅⋅⋅ at Lightning Speed
Prove that ` "cos " ((3pi)/(2)+theta) " cos " (2pi+theta) [ "cot " ((3pi)/(2) -theta) +
Compute cot(3pi/4)