`int(1)/(16x^(2)+9)dx` is equal to
微積分ヘルプ: 積分 ∫ 1/(x^2 √(16x^2-9)) dx - 三角関数の置換による積分
微積分ヘルプ: 積分 ∫ dx/(4x√(16x^2-9)) - 三角関数の置換による積分
Integration of 1/16+9x^2 dx
integrate dx/(1 + 16x^2) dx
Integrate | 1/sqrt(16-x^2) dx
微積分ヘルプ: ∫ dx/(x√(9-16x^2 )) - 三角関数の置換による積分 - テクニック
If `int(1)/(sqrt(9-16x^(2)))dx=alphasin^(-1)(betax)+c`, then `alpha+(1)/(beta)=`
∫1/(x + 1 + 2√x)² dx [0, ∞] MIT Integration Bee 2025, Regular Season, Problem 1 #mitintegrationbee
∫ 1/(x² + 1) dx for x = 0 to ∞. Solving integration problem involve invest tangent function.
if `int (1)/(sqrt(9-16x^(2)))dx=alpha sin ^(-1) (beta x) +c.` then ` alpha +(1)/(beta )=`
∫(Σ k=1 to ∞ (-1)ᵏx²ᵏ) dx [0, 1] = ? MIT Integration Bee 2025, Qualifying Exam, Question 20.
∫(2•ln(x) + 1)e^(ln(x))^2 dx MIT Integration Bee 2023, Qualifying Exam, Question 9. #integrationbee
∫arcsinh(x) dx. MIT Integration Bee 2014, Question 9, Qualifying Exam.
∫1/√(1 - 4x - x²) dx. MIT Integration Bee 2012, Question 6, Qualifying Exam.
Evaluate the integral 16x − 7x dx1
∫cos(20x)sin(25x)dx [-π/2, π/2]. MIT Integration Bee 2025, Qualifying Exam, Question 5. #integral
Human Calculator Solves World’s Longest Math Problem #shorts
∫(sin⁶(x) + cos⁶(x) + 3sin²(x)cos²(x)) dx. MIT Integration Bee 2023, Qualifying Exam, Question 12.