結果 : is 1 cos2x equal to sec2x
1:45

If f(x) = cos^2 x + sec^2 x, then find value of f(x)

BKMathur Maths Delhi
3,259 回視聴 - 2 年前
6:19

Prove that :- (1 - cos2x + sinx)/(sin2x + cosx) = tanx

Pace Edu.
376 回視聴 - 2 年前
0:16

IF BACKBENCHER BECOME TEACHER 😎| MATH TRICKS | SIN,COS,TAN |

Samu Paul
418,000 回視聴 - 3 年前
3:48

Prove that :- (tan2x)/(1+ sec2x) = tanx

Pace Edu.
359 回視聴 - 2 年前
1:54

Prove that Sin2x/1-cos2x =cotx | sin2theta/1-cos2theta= cot theta|

Mathematics Sirji
417 回視聴 - 2 年前
1:56

33. Prove: (1 + cos 2x)/(sin 2x) = cot x

MathSciVids
193 回視聴 - 5 年前
4:37

Prove that :- (1 - cos2x)/(1 + cos2x) = tan²x

Pace Edu.
2,259 回視聴 - 2 年前
3:46

次のどれが Unity と等しくありませんか?sin2𝒙 + cos2𝒙cot2𝒙 − cosec2𝒙sec2𝒙 − tan2𝒙tan𝒙. cotx

Study Smartly at Home
43 回視聴 - 3 週間前
0:50

Easy Way to Remember Derivatives of Trigonometry Ratios #shorts | How to Remember Derivatives Easily

Enjoy Math
323,801 回視聴 - 3 年前
3:34

f(x)=cos^2x+s e c^2x の場合、\r\n\r\nf(x)<,1\r\n (b) f(x)=1\r\n (c) 2ltf(x)lt1 (d) f(x)ge2...

Doubtnut
517 回視聴 - 2 年前
2:24

If y =1/2 log(1-cos2x/1+cos2x), prove that dy/dx =2cosec2x

padhai.Online
317 回視聴 - 2 年前
8:09

cos2x/(1 + sin2x) = tan(pi/4 - x) Double and Half Angle Identity

Anil Kumar
20,417 回視聴 - 7 年前
1:52

[IIT 1994] Prove that sec2x - tan2x = tan (PI/4 - x) when x lies between 0 and PI/4.

mathmuni
2,883 回視聴 - 12 年前
2:31

`(sin 2x)/(1- cos 2x ) = cot x`

Doubtnut
8,143 回視聴 - 5 年前
4:50

Prove that :- cos2x = (1 - tan²x)/(1 + tan²x)

Pace Edu.
3,803 回視聴 - 2 年前
3:03

微積分ヘルプ: 積分 ∫ (sec2x tan2x)/(1+sec2x) dx と ∫ (csc2x cot2x)/(1+csc2x) dx - 置換

Calculus Physics Chem Accounting Tam Mai Thanh Cao
45 回視聴 - 2 年前
2:27

`(sin 2x)/(1+cos 2x) = tan x`

Doubtnut
339 回視聴 - 5 年前
5:00

(1/sec^2x-cos^2x + 1/cosec^2x-sin^2x)sin^2xcos^2x =| 1-sin^2xcos^2x/2+sin^2xcos^2x

Mathematics Sirji
874 回視聴 - 1 年前
0:20

Before JEE vs After JEE 😍 | My Transformation💔 | IIT Motivation|Jee 2023 #transformation #iit #viral

Harshita Singh(IITian)
2,874,457 回視聴 - 2 年前
3:54

Prove secx = (sin2x) / (sinx) - (cos2x) / (cosx).

letspassmath
1,254 回視聴 - 4 年前