Let 𝒇(𝒙)=∫𝒅𝒙/((𝟑+𝟒𝒙^𝟐)√(𝟒−𝟑𝒙^𝟐 )), |𝒙| less than 𝟐/√𝟑. If 𝒇(𝟎)=𝟎 and 𝒇(𝟏)= 𝟏/𝜶𝜷 𝐭𝐚𝐧^(−𝟏) 𝜶/𝜷,
Let 𝒇(𝒙)=∫𝒅𝒙/((𝟑+𝟒𝒙^𝟐)√(𝟒−𝟑𝒙^𝟐 )), |𝒙| less than 𝟐/√𝟑. If 𝒇(𝟎)=𝟎 and 𝒇(𝟏)= 𝟏/𝜶𝜷 𝐭𝐚𝐧^(−𝟏) 𝜶/𝜷
Derivative dy/dx | Calculus problem.
Integration By Parts
Let f(x)= 2x^3-3x^2-12x+5 on[-2,4] relative maximum occurs at |RD Sharma|12|Part 1|2023|AOD|CBSE|MCQ
#iitjee_mains2024 ,if the domain of function f(x)=log(2x+3/4x^2+x-3)+cos^-1(2x-1/x+2)is(alpha,beta ]
Let `int(x^3-1)/(x^3sqrt(3x^4+2x^2-1))dx=f(x)+c` Where `f(1)=-1and c` is the constant of integ
Integration (Calculus)
"Let `f(x)=2x^3-3x^2-12 x+5` on `[-2,\ 4]` . The relative maximum occurs at `x=`
How To Integrate Using U-Substitution
Integral of ∫4/(x^3+4x)dx
Square root u substitution: integrate x^5*sqrt(2-x^3) with the explicit u-substitution let u=2-x^3.
Let `A=[2 3-1 2]a n df(x)=x^2-4x+7.` Show that `f(A)=Odot` Use this result of find `A^5dot`
Let g (x) be an antiderivative for f(x). Then `ln (1+ (g(x))^2)` is an antiderivative for
If I = integration 3√2/4 to 3√3/4 48/√9-4x² dx is equal to | jee mains Maths solution | integration
Let `1=int_0^1(2+3x+4x^2)/(2sqrt(1+x+x^2))dx`. Find the value of `I^2.`
Let `f(x)=(4+5cosx)/(5+4cosx)(x in (0,pi/2)) and int(dx)/((5+4cosx)^2)=5/27g(x)-4/27 h(x)+c`
Let `f:RtoR`, defined by `f(x)={{:(3x-2,xlt0),(1",",x=0),(4x+1",",xgt0):}` Find (i) `f(2)`
let `f(x)=x^2-3x+4` the values of `x` which satisfies `f(1)+f(x)=f(1)*f(x)` is
CALCULUS 2: Basic Integration