The general solution of `4 sin^4 x + cos^4x= 1` is
Important Differential Equation: dy/dx = 1/(sin^4 x + cos^4 x)
Trigonometry - Find The Range of sin^4x + cos^4x
The maximum value of `sin^4x + cos^4x ` is
The Function f(x)=sin^4x+cos^4x Increasing | Find the Intervals in Which f(x)=sin^4x+cos^4x | AOD
`sin^4x+cos^4x=1-1/2sin^2 2x`
integrate of sin2x/(sin⁴x+cos⁴x) dx
If sin A + cos A = 𝟏/(𝟐√𝟐), then find the value of sin^4(A) + cos^4(A).
Prove that : (sin^4 θ - cos^4 θ +1) cosec^2 θ = 2...|| Class 10 ||
Period of` f(x) = sin^4 x + cos^4 x`
Sin^4A= 1/8 (3-4cos2A+cos4A)
Prove sin^4x-cos^4x=sin^2x-cos^2x
Class 12 || Differential Equations || Solve : dy/dx = 1/(sin⁴x + cos⁴x)
Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval[0,pi/4]. (ii)...
cos 4x = 1-8sin^2x cos^2x #eduacademia
Prove that Sin4X=1/8(3-4Cos2x+Cos4x)
Find the local maximum or local minimum, if any, of the function `f(x)=s in^4x+cos^4x ,\\ \\ 0 l...
😳 CLEAN BASIC CALCULUS Differentiate d/dx(sin2x)=? #Shorts
The function f(x)=sin^4x+cos^4x is strictly increasing in the interval | Let f(x)=sin^4x+cos^4x
`cos^4A-sin^4A` is equal to