cosh^2(x) - sinh^2(x) = 1 の双曲恒等式を証明する
Hyperbolic Trig Functions - Basic Introduction
Hyperbolic Trigonometric Identity: sinh(x/2) + sign function sgn(x)
cosh^2 x - sinh^2 x = 1 || Hyperbolic Trigonometric Identities
sinh 2x = 2 sinh x cosh x || Hyperbolic Trigonometric Identities
sinh(ix) and cosh(ix) each has a nice identity. the hyperbolic cosine
How To Find The Derivative of Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, & Cos4x
Find derivative of y = ln sinh x - 1/2 coth^2 x with respect to x. Hyperbolic functions
1 - tanh^2 x = sech^2 x || Hyperbolic Trigonometric Identities
Derivative of sin²x and sin x²
Table of Laplace transform
Hyperbolic identities (KristaKingMath)
Prove the identity cosh(x+y) = cosh x cosh y + sinh x sinh y. Hyperbolic functions
Derivatives of Hyperbolic Trigonometry: coth(x)
Derivative of Inverse Hyperbolic Trigonometry: sinh^-1(x)
Inverse Hyperbolic Trigonometry as Logarithms: sinh^-1(x)
Prove the identity sinh(x+y) = sinh x cosh y + sinh x sinh y. Hyperbolic functions
Calculus Help: Integral of (cosh^4 x - sinh^4 x) dx - Hyperbolic Trigonometry - Identities
Find the remaining five hyperbolic functions given sinh x = -3/4
Hyperbolic Trigonometric Identity: sinh(x+y)