cot(270 + x) | cot(3pi/2 + x) | cot(270 + A) | cot(3pi/2 + A) | cot(270 + theta)
NCERT +1 maths chapter 3 trigonometry cos(3π/2 + x)cos(2π+x)[cot(3π/2-x) + cot(2π+x)]= 1
Simplify the expression cos (x - 3pi/2). Sum and Difference Formula. Trigonometry
cot(3π/2-x)=?,Trigonometry,m aths,class-11,General aptitude,cot(2π-x),cot(π/2+x)
Cofunction Trigonometric Identity Explanation sin(3pi/2 - x)
cos((3pi)/(2)+theta)cos(2pi+theta)[cot((3pi)/(2)-theta)+cot(2pi+theta)]=1 | 11 | であることを証明してください。
Establish sum and difference identity sin(3pi/2 + x) = - cos x
cos( 3pi/2 + theta ) = sin theta
cot(270 – x) | cot(3pi/2 – x) | cot(270 – A) | cot(3pi/2 – A) | cot(270 – theta)
'cos(3pi2 + x) cos(2pi + x )[ cot(3pi2- x) + cot(2pi + x)] = 1'||
If cos x = (- sqrt(3))/2 and pi x (3pi)/2 then the value of 4cot^2 x - 3cos e * c ^ 2 * xis:
cos(3pi/2 - x) | cos(3pi/2 - theta)
`sin(pi/2+theta)*cos((3pi)/2+theta)*tan((5pi)/2+theta)*cot((7pi)/2+theta)`
If `tan theta = - 4/3 , (3pi)/2 lt theta lt 2pi`, find the value of `9sec^2 theta-4 cot theta.`
`cos((3pi)/(2) +x) cos(2pi+x)[cot(3pi)/(2)-x+cot(2pi+x)]=1`
Prove that: `cos((3pi)/2+x)cos(2x+x)[cot((3pi)/2-x)+cot(2pi+x)]=1`...
Trigonometry - Find Values of Trigonometric Ratios Greater than 90 Degrees | Trigonometry class 10
prove cos(x - 3pi/2) = -sinx
Sin (π/2- theta)=? and Cos (π/2-theta)=? #shorts#sin#cos#mathematics#susmitamaths
sin(3pi/2 - x) | sin(3pi/2 - theta)